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FACTORS OF JACOBIANS AND ISOTRIVIAL ELLIPTIC SURFACES

A. LIBGOBER

Abstract. We show that the rank of the Mordell-Weil group of an isotrivial elliptic surface
over C(t) can be calculated as the number of isogeny factors which are elliptic curves in the
jacobian of the cyclic cover of a projective line associated to the elliptic surface. We illustrate
this method by calculating the ranks in several examples, some of which recover already
known results, and discuss relation between open questions on factors of jacobians and elliptic
surfaces.

1. Introduction

In papers [3] and [15] we developed a method for calculation of the ranks of Mordell-Weil
groups of isotrivial complex elliptic threefolds which yields an expression for these ranks in
terms of the Albanese variety of cyclic covers of the base of the elliptic fibration. In many cases
this leads to explicit values of the rank (cf. [3],[15]) since the structure of Albanese variety,
always depending on the singularities of the discriminant of elliptic fibration, is often rather
simple even for discriminants with quite complicated singularities. In present note we illustrate
a similar approach to the study of Mordell-Weil ranks of isotrivial elliptic surfaces. The upshot
is a relation between the Mordell Weil rank of an elliptic surface with generic fiber isomorphic to
an elliptic curve E and the isogeny factors isomorphic to E in the Jacobian of the appropriate
cyclic cover of the base of elliptic fibration. More precisely we have the following.

Theorem 1.1. Let E ! P1
be an isotrivial elliptic surface over C. Denote by E a generic fiber

of this fibration and let � = AutE. Denote by C� the cyclic cover of P1
branched over the zero

set of the discriminant of E over which the pullback of E is biholomorphic to a direct product.

Let Jac(C�) be the Jacobian of C� and let

(1) r = {max k|Jac(C�) ⇠� E
k ⇥A}

(here ⇠� denotes equivariant isogeny of abelian varieties with �-action). If E has a complex

multiplication then the rank of Mordell-Weil of E satisfies:

(2) rkMW (E) = 2r

Otherwise this rank is r.

Approach to the study of isotrivial families via covering space over which family trivializes
in the case of surfaces was used in the past (e.g. [8] 1). The advantage of the case of surfaces
over high dimensional elliptic fibrations is that the ranks of elliptic surfaces were the objects of
intense scrutiny for a long time (cf. [17]). The theorem 1.1 allows to understand the values of
the Mordell-Weil ranks from a di↵erent perspective. As examples we recover several results of
Usui (cf. [24]), Shioda (cf. [21]) and others, in particular a calculation of the maximal known
at the moment rank of elliptic surfaces (i.e.68). Our calculations of Mordell-Weil ranks in these
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examples depends on the description of the Jacobian of Fermat curves due to Koblitz (cf. [10]
cf. also [1]) 2 and hyperelliptic curves given in [6] (cf. also [22]). Understanding products of
elliptic curves which appear as factors of Jacobians is an interesting problem (cf. [4]) and in fact
one can use the theorem 1.1 to obtain for some cyclic covers the multiplicity of a curve in the
isogeny decomposition of the Jacobian (cf. 4.8) using available information on the Mordell-Weil
ranks.

The content of the paper is as follows. In section 2 we recall definitions and introduce nota-
tions. Section 3 contains a proof the theorem 1.1 and in section 4 we discuss examples illustrating
approach to the ranks of elliptic surfaces using Jacobians. Concluding section 5 contains a dis-
cussion of related problems.

2. Preliminaries

By elliptic surface we mean a smooth projective surface E together with a morphism ⇡ : E ! C

where C is a smooth curve whose generic fiber is a genus one curve and which moreover is endowed
with a section s0 : C ! E. Section s0 allows to give to fibers of ⇡ the structure of elliptic curve.
An elliptic surface is called isotrivial (resp. trivial) if the j-invariant of a generic fiber over c 2 C

is a constant function of c (resp. E is birational to the surface E ⇥ C for some elliptic curve E

over C). Below EE denotes the elliptic curve which is a smooth fiber of an isotrivial surface E
(subscript will be omitted when the choice of E is clear from context). We refer for the basics of
the theory of elliptic surfaces to the surveys [17] or [5, Ch.1]. For additional material related to
this discussion see [15].

Recall that the Mordell-Weil group of E (denoted MW (E)) is the group of sections s : C ! E
of ⇡ with the group structure given by addition of s1(c), s2(c) 2 Ec where Ec is the fiber of E over
c with the group structure existing on any smooth curve of genus one after choice of s0(c) as the
zero. This group of sections is finitely generated, unless E is trivial but in latter case the group
of sections modulo the subgroup of constant sections of C ⇥ E given by se : c ! e, e 2 E (the
Chow trace) is still finitely generated (cf. [12], [17]). The Mordell-Weil group in the case when
E is trivial, is the quotient of the group of sections by the subgroup of constant sections. The
morphism ⇡ gives to E the structure of elliptic curve over C and from this view point MW (E)
is just the group of points of elliptic curve over the function field C(C) (again if E 6= E ⇥C and
the quotient by the subgroup E(C) otherwise).

Since MW (E) is a finitely generated abelian group, it is isomorphic to Zr�Tor where r 2 Z�0

and Tor is a finite abelian group. The integer r is called the rank of the elliptic surface. The
rank of E has the following expression: (Shioda-Tate formula)

(3) r = rkNS(E)� 2�
X

v2�⇡

(m(Fv)� 1)

where NS(E) is the Neron-Severi group of E, �⇡ is the set of points in C over which the fibers of
⇡ are singular and mv(F ) is the number of irreducible component in ⇡

�1(v). Most calculations
of the ranks are based on a use of (3). Note that set �⇡ ⇢ C consists of the points at which the
discriminant vanishes (the latter is an element of H0(C,L12) for some line bundle on C cf. [5,
th.1.4.1].

In many cases, the ranks and Mordell-Weil groups of elliptic surfaces are known. However
it seems is unknown if there is a universal bound (cf. [17]). The largest known rank 68 of
elliptic surfaces is achieved by y

2 = x
3 + t

360k � 1 (cf. [21] and the section 4.5 below). Over

2interestingly, Shioda’s calculation in these example depends on properties of Delsarte surfaces closely related to
Fermat surfaces.
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function fields of characteristic p > 0, the ranks are unbounded for both isotrivial (cf. [18]) and
non-isotrivial cases (cf. [23]).

We shall need the following description of isotrivial surfaces in terms of trivial ones which we
shall briefly sketch (cf. [5, 1.4.2] and references there).

Proposition 2.1. Let ⇡ : E ! C be an isotrivial fibration with generic fiber E. Let � = AutE

be the automorphism group of E (i.e. a cyclic group of order 2, 4 or 6). Then there is a curve

C� and a covering map ⇡� : C� ! C with the covering group � and ramification set supported

at �⇡ such that one has birational isomorphism:

(4) E⇥C C� = C� ⇥C EE

Proof. As in [15] one can use the results in [13] and [11] to deduce that there is a �-covering
C

0 � S ! C � �⇡ such that C
0 is a smooth projective curve, S is a finite subset of C 0 and

⇡
�1(C ��⇡) = E ⇥ (C 0 � S)/� where the quotient on the right is taken for the diagonal action

of �. Using the identification E ⇥ (C 0 � S)/� ⇥C��⇡ C� � S = E ⇥ (C 0 � S) the birational
equivalence (4) is clear.

Alternatively, since the j-invariant i.e. the map C ��⇡ ! H/PSL2(Z) is constant (here H

is the upper half-plane) the monodromy representation ⇡1(C � �⇡) ! Aut
+
H1(E,Z) factors

through ⇡1(C � �⇡) ! Aut(E) (cf. [5, p.40]). Hence the pullback of E on the covering of
C � �⇡ corresponding to the latter homomorphism of the fundamental group yields a family
with constant j-invariant and trivial holonomy i.e. the direct product. ⇤

Finally recall that the Jacobian of a curve C can be characterized as an abelian variety
universal with respect to holomorphic maps into abelian varieties A i.e.

(5) Mor(C,A) = Hom(Jac(C), A)

(on the left is the group of maps up to a translation by a point in A). Moreover this correspon-
dence is compatible with holomorphic maps of C and in particular if � is a subgroup of Aut(C)
acting on A then for the group of �-maps one has:

(6) Mor�(C,A) = Hom�(Jac(C), A)

where the subscript indicates equivariant maps.

3. Proof of theorem 1.1

In this section we shall prove the theorem 1.1. Let E be isotrivial but non trivial elliptic surface.
Let s : C ! E be a point of E over C(C). The map C� ! E ⇥C C� given by c̃ ! (s(⇡�(c̃)), c̃),
(c̃ 2 C�) yields the lift s̃ of s which is a section of the trivial (cf. (4)) elliptic surface C� ⇥ EE.
Unless s has order 2 in MW (E), s̃ is not constant since otherwise s̃(c̃) = (c̃, e) and e 2 EE must
be �-invariant i.e. is a 2-torsion point. Let Sec0(C� ⇥E) be a subgroup of the group of sections
of C� ⇥ E isomorphic to MW (C� ⇥ E). 3 It can be defined using a splitting of the sequence

(7) 0 ! E ! Sec(C� ⇥ E) ! MW (C� ⇥ E) ! 0

For example, a map Sec(C� ⇥E) ! E given by sending s̃ to s̃(c̃) for a point c̃ 2 C� yields such
a split. One has the following isomorphisms of groups in which the first one is obvious while the

3or, if � = Z2 or Z4, rather a maximal 2-torsion free subgroup among the subgroups with the following property:
the only constant �-invariant (for diagonal action of �) element in Sec0(C� ⇥ E) is the zero section.
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second is a consequence of the universal property of the Jacobian with respect to the maps from
the curve to abelian varieties (cf.(5)):

(8) Sec
0(C� ⇥ E) = Mor(C�, E) = Hom(Jac(C�), E)

The lift of s induces the equivariant map Jac(C�) ! E with respect to the natural action of
� ⇢ AutE on E. Vice versa, equivariant map from Jacobian of C� to E induces the �-equivariant
map of C� which viewed as a section of C� ⇥ E descents to a section of E. Hence

(9) MW (E) = Hom�(Jac(C�), E)

Next let Jac(C�) ⇠� E
r ⇥ A and A is not �-isogenous to E ⇥ A

0. By Poincare reducibility
theorem (cf. [16]) the latter is equivalent to Hom�(A,E) = 0 and hence Hom�(Jac(C�), E) =
Hom(Er

, E) = End(E)r. The latter has rank 2r if E has complex multiplication since rkEnd(E)
= 2 in this case. Otherwise rkHom(Er

, E) = r.
Note that the above argument shows that calculation of the rank in theorem 1.1 also holds if

E is trivial.

4. Elliptic surfaces related to Fermat curves

4.1. Cyclic covers of P1. In most examples considered below the curves over which the elliptic
surfaces becomes trivial and Jacobians of which according to the theorem 1.1 determine the
Mordell Weil groups are quotients of Fermat curve. In particular the Jacobians of these curves
are subvarieties of Jacobians of Fermat curves. We recall results from [10] describing the factors
of Jacobians of Fermat curves.

Let FN be the curve given by the equation:

(10) x
N + y

N + z
N = 0

The one dimensional components of Jac(FN ) = H
0(FN ,⌦1

FN
)⇤/H1(FN ,Z) correspond to one

dimensional subspaces of H0(FN ,⌦1

FN
) generated by forms

(11) !r,s,t =
x
Nr�1

y
Ns�1

dx

yN�1
(Nr,Ns,Nt 2 Z+

, r + s+ t = 1)

Note that !r,s,t spans an eigenspace for transformation induced by (x, y, z) ! (⇣Nx, y, z) (resp.

transformation induced by (x, y, z) ! (x, ⇣Ny, z)) where ⇣N = exp( 2⇡
p
�1

N
) corresponding to the

eigenvalue: exp(2⇡
p
�1r) (resp. exp(2⇡

p
�1s)).

The curves which are the isogeny components of Jac(FN ) all appear as the factors of the
abelian varieties denoted as J[r,s,t] where [r, s, t] is the orbit of the triple for the action defined
below. J[r,s,t] are all of CM type and as such correspond to the cyclotomic fields Q(⇣M ) (cf. [19],
[14]) with M |N . The CM type of J[r,s,t] is given by the subset of Gal(Q(⇣M )/Q) = (Z/MZ)⇤
defined as follows:

(12) Hr,s,t = {u 2 (Z/MZ)⇤| < ur > + < us > + < ut >= 1}

(here < · > denotes the least non negative rational residue modulo 1). The abelian varieties
J[r,s,t] are labeled by the orbits of the following action of Hr,s,t on triples (r, s, t): u(r, s, t) = (<
ur >,< us >,< ut >). Each of J[r,s,t] is isogenous to the product ECardHr,s,t for an appropriate
CM curve E.
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Proposition 4.1. The abelian varieties J[r,s,t] having the curve E0 with j-invariant zero as an

isogeny component are given in the following table:

(13)

M Mr Ms Mt CardHr,s,t label

3 1 1 1 1 3(i)
6 1 1 4 1 6(i)
6 1 2 3 1 6(ii)
12 1 1 10 2 12(i)
12 1 2 9 2 12(ii)
12 1 3 8 2 12(iii)
12 1 4 7 2 12(iv)
12 1 5 6 2 12(v)
15 1 2 12 4 15(i)
15 1 4 10 4 15(ii)
18 1 3 14 3 18(i)
21 1 4 16 6 21(i)
21 1 8 12 6 21(ii)
24 1 1 22 4 24(i)
24 1 4 19 4 24(ii)
24 1 5 18 4 24(iii)
24 1 6 17 4 24(iv)
24 1 7 16 4 24(v)
24 1 10 13 4 24(vi)
24 1 11 12 4 24(vii)
30 1 5 24 4 30(i)
30 1 10 19 4 30(ii)
39 1 16 22 12 39(i)
48 1 22 25 8 48(i)
60 1 10 49 8 60(i)

Proof. Abelian varieties J[r,s,t] admitting the curve E0 as isogeny component admit the auto-
morphism of order 6 and hence Q(⇣6) is a subfield of End(J[r,s,t]) ⌦ Q = Q(⇣M ). Therefore
3|M . The table (13) is the part of the table from [10] corresponding to M with this divisibility
condition. ⇤
Proposition 4.2. Let C6m be the cyclic cover of P1

which is a compactification of the curve

s
6 = t

6m � 1. Denote by T the automorphism of Jacobian induced by the automorphism of

C6m given by (s, t) ! (⇣6s, t). Let S(E0) be the set of ordered triples
6m

M
(r, s, t) (where M |6m)

such that
r

M
= 1

6
and such that no two triples belong to the same orbit of Hr,s,t. Then the

maximal number of E0-factors in Jac(C6m) on the tangent space at identity of which T acts as

multiplication by ⇣6 is equal to

(14)
X

(r,s,t)2S(E0)

CardHr,s,t

Proof. C6m is the quotient of F6m by the action of the group of roots of unity generated by
(x, y, z) ! (⇣mx, y, z). Hence Jac(C6m) is component of the product of varieties J[r,s,t] such
that 6m(r, s, t) 2 (Z+)3 and such that 6r 2 Z+. The equivariance condition restricts r further
to r = 1

6
. The claim follows. ⇤

The following examples were obtained by Shioda and Usui (cf. [24]) using a di↵erent method
which we shall derive from Prop. 4.2.
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Example 4.3. Elliptic surface E6 : y2 = x
3 + t

6 � 1 The curve C6 is the Fermat curve F6 and
we count the number of E0-components in the isogeny class of Jac(F6). This is the number of
triples in the table (13) with M |6, and r = 1

6
. We obtain the following triples (Mr,Ms,Mt):

(15) (1, 1, 4), (1, 4, 1), (1, 2, 3), (1, 3, 2).

Hence Jac(C6) ⇠ E
4
0
⇥A where A does not have E0 isogeny components and hence rkMW (E6) =

8 (cf. [24] where the corresponding lattice given by the height pairing is identified with the lattice
E8).

Example 4.4. Consider the elliptic surface E9 : y2 = x
3 + t

9 � 1. rkMW (E9) depends on the
number of E0 components of u6 = t

9 � 1. This curve is the quotient of F18 by the action of
µ3 ⇥ µ2 given by multiplication of coordinates. Hence the E0 components of Jac(F18/µ3 ⇥ µ2)
correspond to triples (a, b, c) such that,

a) a+ b+ c = 18 and
b) 3|a, 2|b
c)M |18
The triples satisfying these conditions are:

(16) 3(i) : (6, 6, 6), 6(i) : (3, 12, 3), 6(ii) : (3, 6, 9), 6(ii)⇤ : (9, 6, 3), 18(i) : (3, 14, 1).

The equivariance conditions yield that a = 3. This is satisfied by: 6(i), 6(ii), 18(i). CardHr,s,t

in the first two cases is 1 and in the case 18(i) it is 3. Hence Jacobian contains E
5
0
and hence

rkMW (E9) = 10 (cf. [24]).

Example 4.5. Consider the surface E360 : y
2 = x

3 + t
360 � 1. Shioda’s calculation yields

rkMW (E360) = 68. To see this from the viewpoint of the theorem 1.1 we need to calculate
the number of (equivariant) E0-factors of Jac(C360). They correspond to the triples (r, s, t)
such that M |360 and one of components (r, s, t) is 1

6
. Note that this implies that 6|M . The

triples satisfying these condition are given by the following list. Below (R,S, T ) = 360(r, s, t);
each triple in the list comes from the triple 1

(g.c.d(R,S,T ))
(R,S, T ) appearing in the table with

M = R+S+T

g.c.d(R,S,T )
; we indicate its label in table (13) in front and add asterisk if it is obtained by

a permutation of a triple in (13).

(17) 6(i) : (60, 60, 240), 6(i)⇤ : (60, 240, 60), 6(ii) : (60, 120, 180), 6(ii)⇤ : (60, 180, 120),

(18) 12(ii) : (60, 30, 270), 12(ii)⇤ : (60, 270, 30), 18(i) : (60, 20, 280), 18(ii)⇤ : (60, 280, 20),

(19) 24(ii) : (60, 15, 285), 24(ii)⇤ : (60, 285, 15), 30(i) : (20, 60, 288), 30(i)⇤ : (20, 288, 60),

(20) 60(i) : (60, 6, 294), 60(i)⇤ : (60, 294, 6)

However 60(i), 60(i)⇤ give the same abelian 4-fold since (60, 6, 294) ·72 = (60, 294, 6) (H[1,10,49] =
{7i31j |i, j 2 Z/4Z⇥ Z/2Z} cf. [10]). Similarly (60, 15, 285) · (7 · 13) = (60, 285, 15) ((H[1,4,19] =
{7i13j |i, j 2 Z/2Z⇥Z/2Z}) i.e. J[60,285,15] coincides with J[60,15,285]. There are no other repeti-
tions in abelian varieties corresponding to triples (17)-(20) as follows by direct calculation using
data onHr,s,t from [10]. The dimensions of J[r,s,t] above are as follows. For 6(i), 6(i)⇤, 6(ii), 6(ii)⇤
the dimension is equal to 1, for 12(ii), 12(⇤⇤) it is 2, for 18(i), 18(ii)⇤ it is 3, for 24(ii), 24(ii)⇤
it is 4, for 30(i), 30(i)⇤ it is 4 and for 60(i), 60(i)⇤ it is 8. Taking into account that, as was
mentioned, J[1,10,49] = J[1,49,10] and J[4,19,1] = J[4,1,19] we obtain:

(21)
X

CardHr,s,t = 1 + 1 + 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 4 + 8 = 34

Hence the total rank is 2⇥ 34 = 68
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Example 4.6. The case of surfaces y
2 = x

3 + t
360k � 1 can be analyzed similarly. We need

to know the number of factors of the Jacobian of s6 = t
360k � 1 which are µ6-equivalent to the

curve with j-invariant zero with given automorphism of order 6. Those are all the factors of
the Jacobian of Fermat curve (10) with N = 360k. The equivariance conditions on (r, s, t) to
appear as the factor in the Jacobian of the curve s

6 = t
360k � 1 is Mu · (N

M
) = N

6
i.e. Mu = M

6

(where u = r, s, t) which is the same as in the case k = 1. Hence the collection of the varieties
J[r,s,t] which are the product of the curves E0 is independent of k i.e. rkMW by theorem 1.1 is
independent of k as well.

Example 4.7. In [6] the authors show that the hyperelliptic curve:

(22) H : y2 = x(x� 1)(x� �)(x� µ)(x� ⌫)

where µ = ⌫
1��

1�⌫
and �, µ, ⌫ are pairwise distinct, di↵erent from 0 and 1 has the Jacobian

isogenous to the product of two copies of the curve:

(23) E : y2 = x(x� 1)(x� ⇤)

where ⇤ is a solution of

(24) ⌫
2
�
2⇤2 + 2⌫µ(�2⌫ + ⇤)⇤+ µ

2 = 0.

Then the elliptic surface

(25) E ⇥H/µ2

where the diagonal action of µ2 is via multiplication by �1 on the first factor and via hyperelliptic
involution on the second has the following ranks:

(26) rkMW =

(
2 if E is without CM

4 if E has CM

This provides isotrivial elliptic surface with arbitrary j-invariant and positive Mordell-Weil rank.
Many examples with large rkMW can be constructed using examples of hyperelliptic curves with
split Jacobian given in [22]

Example 4.8. In work [2] the authors calculated the rank of elliptic surface y
2 = x

3 � 27(t12 �
11t6� 1) is equal to 18. For the curve u6 = t

12� 11t6� 1 this translates into Jac = E
9
0
⇥A with

A ⌧ E0 ⇥A
0 for any A

0.

5. Abelian varieties, families with higher dimensional bases and some questions

5.1. Isotrivial abelian varieties. Using results from [15] theorem 1.1 can be extended to the
case of abelian varieties over C(t):

Theorem 5.1. Let A ! P1
be isotrivial family of abelian varieties over C with a simple generic

fiber. Fix a projective embedding of A, denote by A a generic fiber of this fibration and let � be

the automorphism group of A preserving the polarization. Denote by C� the cover of P1
branched

over the zero set of the discriminant of A over which the pullback of A is biholomorphic to a

direct product (cf. [15], section 2.1 references there). Let Jac(C�) denote the Jacobian of C�

and let

(27) r = {max k|Jac(C�) ⇠� A
k ⇥B}

(here ⇠� denotes equivariant isogeny of abelian varieties with �-action). Then

(28) rkMW (A) = rdimQEnd(A)⌦Q
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Example 5.2. Let E be an isotrivial elliptic surface with fiber being the curve E0 and such that
rkMW (E) > 0. Let An = E⇥P1 ...⇥P1 E (n-fold product). Then rkMW (An) = � · n � 2 Z.

Indeed, An becomes trivial over the same cover C of P1 as A1, and the argument used in the
proof of 1.1 yields that rkME(An) = rdimHom(E0, E

n

0
) = 2nr where r is the multiplicity of

E0 in Jac(C).

5.2. Remarks on isotrivial elliptic threefolds. The following relation, shown for example
in [7], between the Mordell-Weil ranks of elliptic surfaces and ranks of Mordell-Weil groups
of threefolds was used in [3] in order to obtain restrictions on the fundamental groups of the
complements to discriminants.

Proposition 5.3. Let E ! P2
be an elliptic threefold, Let L be a generic line in P2

and E|L is

the restriction of E on L. Then rkMW (E)  rkMW (E|L).

In particular universal bounds on ranks of elliptic surfaces over C(t) yield bounds on ranks
of n-folds (over Pn�1). The relation between the fundamental groups and ranks from [3] is the
following:

Theorem 5.4. Let D be the zero set of the discriminant of elliptic threefold E ! P2
. Assume

that D is irreducible and that the only singularities of C are either ordinary nodes or ordinary

cusps. Then

(29) rkMW (E) = rk⇡1(P2 �D)0/⇡00
1
(P2 �D)

(right hand side is the quotient of the commutator of the fundamental group by the second com-

mutator)

Known bounds on the right hand side in (29), coming from various interpretations, (cf. [3],
[9]) are linear in degree d of D. This leads to the following question:

Question 5.5. Let f(t) be a polynomial of degree d ⌘ 0(mod 6) and Cd(f) be the cyclic cover
of P1 given by equation the u

6 = f(t). Consider the elliptic surface Ef given by

(30) y
2 = x

3 + f(t)

Does exist ✏ > 0 and a positive constant ↵ such that for the rank of Ef one has

(31) rkMW (Ef )  ↵d
1�✏

By the theorem 1.1 this is equivalent to the following:

Question 5.6. Does there exist a bound on the number of isogeny component of Jac(Cd(f))
isomorphic to E0 of the form ↵d

1�✏?

Note that for the curve Cd(f) in (5.5) one has g(Cd(f)) = 5

2
d � 5 i.e. ✏ � 0 in (31). As

was mentioned known examples in characteristic zero obeys bound (31) with ✏ = 1. It would be
interesting to know what is ✏ in positive characteristic.
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